在这个风起云涌的 AI 时代,一场前所未有的资本军备竞赛正在火热上演。算力、算法、数据,这些被视为 AI 领域的三大基石,正成为各大公司争夺的焦点。然而,在这场看似技术驱动的竞赛背后,低成本资金的获取却成为了决定胜负的隐形推手。
在这个风起云涌的 AI 时代,一场前所未有的资本军备竞赛正在火热上演。算力、算法、数据,这些被视为 AI 领域的三大基石,正成为各大公司争夺的焦点。然而,在这场看似技术驱动的竞赛背后,低成本资金的获取却成为了决定胜负的隐形推手。
LLM战场的新玩家,一出手就是王炸!信仰Scaling Law的阶跃星辰,一口气带来了Step-1千亿参数语言大模型、Step-1V千亿参数多模态大模型,以及Step-2万亿参数MoE语言大模型的预览版。而阶跃星辰之旅,终点就是AGI。
2022 年底,随着 ChatGPT 的爆火,人类正式进入了大模型时代。然而,训练大模型需要的时空消耗依然居高不下,给大模型的普及和发展带来了巨大困难。面对这一挑战,原先在计算机视觉领域流行的 LoRA 技术成功转型大模型 [1][2],带来了接近 2 倍的时间加速和理论最高 8 倍的空间压缩,将微调技术带进千家万户。
攀登 Scaling Law,打造万亿参数大模型,前微软 NLP 大牛姜大昕披露创业路线图。
AI 研究走过的最大弯路,就是过于重视人类既有经验和知识。
大模型的成功很大程度上要归因于 Scaling Law 的存在,这一定律量化了模型性能与训练数据规模、模型架构等设计要素之间的关系,为模型开发、资源分配和选择合适的训练数据提供了宝贵的指导。
计划训练一个10B的模型,想知道至少需要多大的数据?收集到了1T的数据,想知道能训练一个多大的模型?老板准备1个月后开发布会,给的资源是100张A100,那应该用多少数据训一个多大模型最终效果最好?