少即是多!10亿参数「小巨人」击败ChatGPT
少即是多!10亿参数「小巨人」击败ChatGPT只有10亿参数的xLAM-1B在特定任务中击败了LLM霸主:OpenAI的GPT-3.5 Turbo和Anthropic的Claude-3 Haiku。上个月刚发布的苹果智能模型只有30亿参数,就连奥特曼都表示,我们正处于大模型时代的末期。那么,小语言模型(SLM)会是AI的未来吗?
只有10亿参数的xLAM-1B在特定任务中击败了LLM霸主:OpenAI的GPT-3.5 Turbo和Anthropic的Claude-3 Haiku。上个月刚发布的苹果智能模型只有30亿参数,就连奥特曼都表示,我们正处于大模型时代的末期。那么,小语言模型(SLM)会是AI的未来吗?
在盖茨眼里,AI对于计算机交互的革命还没来到,但是Scaling Law似乎已经看到尽头了。
只需几分钟、一张图或一句话,就能完成时空一致的4D内容生成。
虽然 OpenAI 反复强调 Scaling Law 是大模型最重要的原则,但事实上,GPT-4 在过去一年里缩小了 10 倍。
在GPT-4发布后14.5个月里,LLM领域似乎已经没什么进步了?近日,马库斯的一句话引发了全网论战。大模型烧钱却不赚钱,搞AI的公司表示:难办!
AGI太遥远,只有模型降价是共识。
什么是 AGI?大模型和 Scaling Law 是其实现基座吗?怎么看价格战?四家大模型公司给出了自己的答案。
训练数据的数量和质量,对LLM性能的重要性已经是不言自明的事实。然而,Epoch AI近期的一篇论文却给正在疯狂扩展的AI模型们泼了冷水,他们预测,互联网上可用的人类文本数据将在四年后,即2028年耗尽。
过去十年间,基于随机梯度下降(SGD)的深度学习模型在许多领域都取得了极大的成功。与此同时各式各样的 SGD 替代品也如雨后春笋般涌现。在这些众多替代品中,Adam 及其变种最受追捧。无论是 SGD,还是 Adam,亦或是其他优化器,最核心的超参数非 Learning rate 莫属。因此如何调整好 Leanring rate 是炼丹师们从一开始就必学的技能。
一般而言,训练神经网络耗费的计算量越大,其性能就越好。在扩大计算规模时,必须要做个决定:是增多模型参数量还是提升数据集大小 —— 必须在固定的计算预算下权衡此两项因素。